60 research outputs found

    3D video coding and transmission

    Get PDF
    The capture, transmission, and display of 3D content has gained a lot of attention in the last few years. 3D multimedia content is no longer con fined to cinema theatres but is being transmitted using stereoscopic video over satellite, shared on Blu-RayTMdisks, or sent over Internet technologies. Stereoscopic displays are needed at the receiving end and the viewer needs to wear special glasses to present the two versions of the video to the human vision system that then generates the 3D illusion. To be more e ffective and improve the immersive experience, more views are acquired from a larger number of cameras and presented on di fferent displays, such as autostereoscopic and light field displays. These multiple views, combined with depth data, also allow enhanced user experiences and new forms of interaction with the 3D content from virtual viewpoints. This type of audiovisual information is represented by a huge amount of data that needs to be compressed and transmitted over bandwidth-limited channels. Part of the COST Action IC1105 \3D Content Creation, Coding and Transmission over Future Media Networks" (3DConTourNet) focuses on this research challenge.peer-reviewe

    Applying an SOM Neural Network to Increase the Lifetime of Battery-Operated Wireless Sensor Networks

    Get PDF
    Wireless sensor networks have garnered significant attention in recent years. According to (The Mobile Internet, 2004), more than half a billion nodes will be shipped for wireless sensor applications in 2010, for an end user market worth at least $7 billion. Wireless sensor networks are one of the first real-world examples of pervasive computing, the notion that small, smart, computing and cheap sensing devices will eventually permeate the environment (Bulusu & Jha, 2005). The combination of distributed sensing, low power processors and wireless communication enables such technology to be used in a wide array of applications such as habitat monitoring and environment monitoring, military solutions, such as battlefield surveillance, and commercial applications, such as monitoring material fatigue and managing inventory.peer-reviewe

    Accurate modelling of Ka-band videoconferencing systems based on the quality of experience

    Get PDF
    This work formed part of the project TWISTER, which was financially supported under the European Union 6th Framework Programme (FP6). The authors are solely responsible for the contents of the paper, which does not represent the opinion of the European Commission.Ka-band satellite multimedia communication networks play important roles because of their capability to provide the required bandwidth in remote places of the globe. However, because of design complexity, in practice they suffer from poor design and performance degradation because of being practically forced to guarantee acceptable end-user satisfaction in conditions of extremely low bit error rates, which is emphasised with the vulnerability of compressed video content to transmission errors, often impossible to be applied during the service development phase. A novel discrete event simulation model is presented, which provides performance estimation for such systems based on subjective measurement and a better quality of experience. The authors show that the proposed model reduces implementation cost and is flexible to be used for different network topologies around the globe.peer-reviewe

    A robust error detection mechanism for H.264/AVC coded video sequences based on support vector machines

    Get PDF
    Current trends in wireless communications provide fast and location-independent access to multimedia services. Due to its high compression efficiency, H.264/AVC is expected to become the dominant underlying technology in the delivery of future wireless video applications. The error resilient mechanisms adopted by this standard alleviate the problem of spatio-temporal propagation of visual artifacts caused by transmission errors by dropping and concealing all macroblocks (MBs) contained within corrupted segments, including uncorrupted MBs. Concealing these uncorrupted MBs generally causes a reduction in quality of the reconstructed video sequence.peer-reviewe

    A support vector machine approach for detection and localization of transmission errors within standard H.263++ decoders

    Get PDF
    Wireless multimedia services are increasingly becoming popular boosting the need for better quality-of-experience (QoE) with minimal costs. The standard codecs employed by these systems remove spatio-temporal redundancies to minimize the bandwidth required. However, this increases the exposure of the system to transmission errors, thus presenting a significant degradation in perceptual quality of the reconstructed video sequences. A number of mechanisms were investigated in the past to make these codecs more robust against transmission errors. Nevertheless, these techniques achieved little success, forcing the transmission to be held at lower bit-error rates (BERs) to guarantee acceptable quality. This paper presents a novel solution to this problem based on the error detection capabilities of the transport protocols to identify potentially corrupted group-of-blocks (GOBs). The algorithm uses a support vector machine (SVM) at its core to localize visually impaired macroblocks (MBs) that require concealment within these GOBs. Hence, this method drastically reduces the region to be concealed compared to state-of-the-art error resilient strategies which assume a packet loss scenario. Testing on a standard H.263++ codec confirms that a significant gain in quality is achieved with error detection rates of 97.8% and peak signal-to-noise ratio (PSNR) gains of up to 5.33 dB. Moreover, most of the undetected errors provide minimal visual artifacts and are thus of little influence to the perceived quality of the reconstructed sequences.peer-reviewe

    A hybrid error control and artifact detection mechanism for robust decoding of H.264/AVC video sequences

    Get PDF
    This letter presents a hybrid error control and artifact detection (HECAD) mechanism which can be used to enhance the error resilient capabilities of the standard H.264/advanced video coding (AVC) codec. The proposed solution first exploits the residual source redundancy to recover the most likelihood H.264/AVC bitstream. If error recovery is unsuccessful, the residual corrupted slices are then passed through a pixel-level artifact detection mechanism to detect the visually impaired macroblocks to be concealed. The proposed HECAD algorithm achieves overall peak signal-to-noise ratio gains between 0.4 dB and 4.5 dB relative to the standard with no additional bandwidth requirement. The cost of this solution translates in a marginal increase in the complexity of the decoder. In addition, this method can be applied in conjunction with other error resilient strategies and scales well with different encoding configurations.peer-reviewe

    Robust decoder-based error control strategy for recovery of H.264/AVC video content

    Get PDF
    Real-time wireless conversational and broadcasting multimedia applications offer particular transmission challenges as reliable content delivery cannot be guaranteed. The undelivered and erroneous content causes significant degradation in quality of experience. The H.264/AVC standard includes several error resilient tools to mitigate this effect on video quality. However, the methods implemented by the standard are based on a packet-loss scenario, where corrupted slices are dropped and the lost information concealed. Partially damaged slices still contain valuable information that can be used to enhance the quality of the recovered video. This study presents a novel error recovery solution that relies on a joint source-channel decoder to recover only feasible slices. A major advantage of this decoder-based strategy is that it grants additional robustness while keeping the same transmission data rate. Simulation results show that the proposed approach manages to completely recover 30.79% of the corrupted slices. This provides frame-by-frame peak signal-to-noise ratio (PSNR) gains of up to 18.1%dB, a result which, to the knowledge of the authors, is superior to all other joint source-channel decoding methods found in literature. Furthermore, this error resilient strategy can be combined with other error resilient tools adopted by the standard to enhance their performance.peer-reviewe

    Resilient Digital Video Transmission over Wireless Channels using Pixel-Level Artefact Detection Mechanisms

    Get PDF
    Recent advances in communications and video coding technology have brought multimedia communications into everyday life, where a variety of services and applications are being integrated within different devices such that multimedia content is provided everywhere and on any device. H.264/AVC provides a major advance on preceding video coding standards obtaining as much as twice the coding efficiency over these standards (Richardson I.E.G., 2003, Wiegand T. & Sullivan G.J., 2007). Furthermore, this new codec inserts video related information within network abstraction layer units (NALUs), which facilitates the transmission of H.264/AVC coded sequences over a variety of network environments (Stockhammer, T. & Hannuksela M.M., 2005) making it applicable for a broad range of applications such as TV broadcasting, mobile TV, video-on-demand, digital media storage, high definition TV, multimedia streaming and conversational applications. Real-time wireless conversational and broadcast applications are particularly challenging as, in general, reliable delivery cannot be guaranteed (Stockhammer, T. & Hannuksela M.M., 2005). The H.264/AVC standard specifies several error resilient strategies to minimise the effect of transmission errors on the perceptual quality of the reconstructed video sequences. However, these methods assume a packet-loss scenario where the receiver discards and conceals all the video information contained within a corrupted NALU packet. This implies that the error resilient methods adopted by the standard operate at a lower bound since not all the information contained within a corrupted NALU packet is un-utilizable (Stockhammer, T. et al., 2003).peer-reviewe

    A comparison of the performance of prediction techniques in curtailing uplink transmission and energy requirements in mobile free-viewpoint video applications

    Get PDF
    The rapid deployment of multimedia services on mobile networks together with the increase in consumer demand for immersive entertainment have paved the way for innovative video representations. Amongst these new applications is free-viewpoint video (FVV), whereby a scene is captured by an array of cameras distributed around a site to allow the user to alter the viewing perspective on demand, creating a three-dimensional (3D) effect. The implementation on mobile infrastructures is however still hindered by intrinsic wireless limitations, such as bandwidth constraints and limited battery power. To this effect, this paper presents a solution that reduces the number of uplink requests performed by the mobile terminal through view prediction techniques. The implementation and performance of four distinct prediction algorithms in anticipating the next viewpoint request by a mobile user in a typical FVV system are compared and contrasted. Additionally, each solution removes the jitter experienced by the user whilst moving from a view pattern to another by allowing some hysterisis in the convergence signal. Thus, this technique enhances the performance of all the algorithms by taking into consideration the fact that the user adapts to the presented views and will react accordingly. Simulation results illustrate that an uplink transmission reduction of up to 96.7% can be achieved in a conventional FVV simulation scenario. Therefore, the application of prediction schemes can drastically reduce the mobile terminal’s power consumption and bandwidth resource requirements on the uplink channel.peer-reviewe

    Modelling of the Wireless Propagation Characteristics inside Aircraft

    Get PDF
    Advances in wireless communications technology and more sophisticated portable devices have led to a drastic increase in wireless services and applications. This advancement was made possible through hardware improvements which allow more functions to be implemented in smaller sized devices. The demand for more wireless services has pushed the industry and the research community to increase the communication data rates, connectivity, and availability. The increase in the user base has also brought a decrease in the cost of the services. Although wireless access is becoming available in all public places around the world, this is still not the case for the air passengers who are cut off from wireless services during the duration of the flight. Deployment of wireless technology inside aircraft is still a hot issue due to uncertainties related to interference. Yet, the European Commission has prepared the legal framework for wireless connectivity inside aircraft in April 2008 (Commission, 2008). Aircraft manufacturers will benefit from this technology by exploiting wireless networks to reduce the cable complexity, hence the weight of the aircraft, and by providing new in-flight services, such as online passenger meal selection, service request and video on demand. On the other hand, provisioning of wireless service during flight would profit passengers, since they gain seamless access to common wireless services, such as phone, Internet, and multimedia communications.peer-reviewe
    • …
    corecore